BEST PRACTICES IN MANAGING PATIENTS WITH KRATOM ADDICTION

Cornel N. Stanciu, MD, MRO, FAPA, FASAM
Assistant Professor of Psychiatry at Dartmouth’s Geisel School of Medicine
Director of Addiction Services at New Hampshire Hospital

Thomas M. Penders, MS, MD
Affiliate Professor of Psychiatry at East Carolina University’s Brody School of Medicine
Attending Psychiatrist at Walter B. Jones Alcohol and Drug Treatment Center

October 6, 2020
Thomas Penders Disclosures

- Thomas Penders, MD, has disclosed that he does not have a relevant financial relationship with an ACCME defined commercial interest.

The content of this activity may include discussion of off label or investigative drug uses. The faculty is aware that is their responsibility to disclose this information.
Cornel Stanciu Disclosures

- Cornel Stanciu, MD, has disclosed that he does not have a relevant financial relationship with an ACCME defined commercial interest.

The content of this activity may include discussion of off label or investigative drug uses. The faculty is aware that is their responsibility to disclose this information.
Target Audience

• The overarching goal of PCSS is to train healthcare professionals in evidence-based practices for the prevention and treatment of opioid use disorders, particularly in prescribing medications, as well for the prevention and treatment of substance use disorders.
Educational Objectives

• At the conclusion of this activity participants should be able to:

 ▪ Review the current state of knowledge surrounding Kratom and its impact on patients with addictive disorders

 ▪ Present the clinical evidence from literature and our survey of national addiction experts in managing Kratom use

 ▪ Discuss challenges and approaches to best manage this comorbidity
INTRODUCTION
Kratom description of plant

- Kratom derives from a tropical evergreen tree or shrub related to the coffee plant.
- Native to Southeast Asia, Thailand, Malaysia, and Papua New Guinea.
- Used by indigenous population historically as a stimulant to enhance stamina and reduce fatigue.
- Also used in traditional medicine for a variety of conditions including pain.
Leaves of Mitragyna Speciosa
Uses in Southeast Asia

- In South East Asia, Kratom is used as an antidiarrheal, a cough suppressant, an antidiabetic, an intestinal deworming agent.
- Used as a wound poultice.
- Aid in treatment of heroin addiction.
- Outside Asia, anecdotal use of Kratom preparations for the self-treatment of chronic pain and opioid withdrawal symptoms and as a replacement for opioid analgesics have been reported.
Modes of Use

- Fresh or dried Kratom leaves are chewed or drank as a tea.
- Lemon juice is often added to facilitate the extraction of the active ingredient.
- Traditionally, before drinking, sugar or honey is added to mask the bitter taste of the brew.
- Less commonly, the leaves can be dried and smoked.
- Prepared as cold cocktail containing leaves, a caffeinated soft drink with codeine-containing cough syrup.
- Users in Southeast Asian countries remove the stems from the leaves before eating.
- Salt is added to prevent constipation. The chewed material is swallowed, chased with warm water, coffee or sugar syrup.
- Kratom users chew one to 3 fresh leaves at a time.
Kratom Products

- Leaves, dried or crushed.
- Extracts, powders, capsules.
- Tablets, liquids, and gum/resin.
- Readily available at shops or online.
- Dramatic increase in importation in 2016.
- Amounts accounted for millions of doses for recreational use.
- Often declared and falsely labeled similar to other newer drugs of abuse.
Legal Status

- Kratom was legal to grow and purchase in all 50 states until 2015.
- DEA identified Kratom as a substance of concern.
- As of June 2019, Kratom is illegal to buy, sell, and use in the states of Wisconsin, Rhode Island, Vermont, Indiana, Arkansas, Alabama and Ohio.
- Illegal counties of Sarasota, Florida; San Diego, California; Washington, DC and Denver, Colorado.
- The status in Canada is somewhat ambiguous. Use and sale of Kratom in Thailand is illegal.
- Banned in Australia, Poland, Denmark, Sweden, Malaysia and Vietnam.
- In many other jurisdictions there is no regulation of its use or sale.
Legal Status

- Currently uncontrolled under federal regulation.
- In August 2016, DEA submitted a notice of intent to temporarily schedule the opioids mitragynine and 7-hydroxymitragynine, as schedule I substances under the CSA.
- American Kratom Association self-described non-profit consumer advocacy organization claims to represent 5 million Kratom users in the US successfully campaigned for withdrawal of planned scheduling.
- DEA withdrew scheduling request in October 2016.
US Legislation

Kratom State Legality & Legislation

[Map showing the legality and legislation of Kratom in different states of the USA, with some states highlighted in red and others in green]
Epidemiology

- Little formal survey data available on prevalence of use in the US population.
- Not included in Monitoring the Future or National Survey on Drug Use and Health.
- CDC report on calls to Poison Control Centers from 2010 - reveals 666 calls with 10-fold increase over the period of the survey.
- Online survey of users identified through the American Kratom Association and through social media mentions.
Epidemiology in SE Asia

- Use of Kratom as a recreational drug amongst a younger demographic in both SE Asia and the West.
- 55% of regular users of Kratom become dependent.
- Lack of reports of toxicity in surveys of users in Thailand.
- Emerging throughout the world as substance helpful in self-management of opioid withdrawal.

Singh D et al, 2014
Survey of Kratom Users

- 10,000 Kratom users were surveyed with goal of determining:
 - Who is consuming Kratom and for what purpose? What perceived beneficial and detrimental effects are reported by users?
 - What do Kratom users report as a commonly used dose and frequency of consumption?
 - Does Kratom represent a potential for abuse and withdrawal?
 - Symptoms?

Grundman O. et al. 2017
Kratom Survey Demographics

- Kratom users are primarily middle aged (31-50, 55.9%).
- Male (56.9%); Married or partnered (54.3%).
- White non-Hispanic (89.4%).
- Employed (56.8%).
- Insured (61.1%).
- Some college (82.3%).
- Income > $35,000 (63.2%).
- Duration of use: > 1 year but < 5 years (56.6%).
• 41% had disclosed their use to healthcare provider
• Self-treatment of chronic pain 68%
• Self-treatment of anxiety/depression 65%
• Self-treatment related to opioid misuse (including opioid withdrawal:
 ▪ Use of illicit drugs 7.7%
 ▪ Use of Prescription opioids 26.0%
Behavioral Pharmacology

The effects in humans are dose-dependent:

- Small doses (1-5g)
 - Stimulatory effects (~ cocaine or amphetamines).
- Larger dosages (>5g)
 - Sedative-narcotic, analgesic effects (~ opioids).
Complex Composition

<table>
<thead>
<tr>
<th>Alkaloid</th>
<th>Percentage</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitragynine</td>
<td>66%</td>
<td>Analgesic, antitussive, antidiarheal, adrenergic, antimalarial, Smooth muscle relaxer, Smooth muscle relaxer</td>
</tr>
<tr>
<td>Paynantheine</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>Speciogynine</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>7-Hydroxymitragynine</td>
<td>2%</td>
<td>Analgesic, antitussive, antidiarheal, Weak opioid agonist, Vasodilator, antihypertensive, muscle relaxer, diuretic, diastolic, antiinflammatory, antiarrhythmic, anesthetic, Immunostimulant, anti-leukemic, Immunostimulant, anti-leukemic</td>
</tr>
<tr>
<td>Specioliatine</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Mitraphylline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Isomitraphylline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Speciophylline</td>
<td><1%</td>
<td>Anti-leukemic, Vasodilator, antihypertensive, calcium channel blocker, antiaggregant, anti-inflammatory, antipyretic, anti-arrhythmic, anti-hypertensive</td>
</tr>
<tr>
<td>Rhynochophylline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Isorhynchophylline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Ajmalicine</td>
<td><1%</td>
<td>Cerebrocircular, antiaggregant, anti-adrenergic, sedative, anticonvulsant, smooth muscle relaxer, Opioid agonist, Calcium channel blocker, anti-locomotive, Anti-locomotive</td>
</tr>
<tr>
<td>Corynantheidine</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Corynoxine A</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Corynoxine B</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Mitrifoline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Isomitrafoline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Oxindale A</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Oxindole B</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Speciocoline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Isopesicofoline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Cilaphylline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Mitracilatine</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Mitragnaline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Mitragynaline</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Mitragynalinic acid</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Corynantheidalinic acid</td>
<td><1%</td>
<td></td>
</tr>
</tbody>
</table>

- **Leaf analysis:**
 - 40 structurally related alkaloids, flavonoids, terpenoid saponins, polyphenols, and various glycosides.
 - >25 indole alkaloids
 - Mitragynine *(MG)*
 - 7-hydroxymitragynine *(7OHTMG)*
Potency
Competitive Binding Studies

• MG’s affinity:
 1. Opioid Receptors (Kappa, Mu, Delta)
 ▪ Mu partial agonist (~Buprenorphine (Bup))
 – 7OHMG > MG > morphine
 ▪ Kappa antagonism more potent than Bup, morphine
 2. Other Rs (serotonergic, noradrenergic and dopaminergic)
 ▪ Alpha-2 adrenergic R agonist
 ▪ 5-HT2A R antagonist
 ▪ D1 R agonist *
 ▪ ?5-HT2C, 5-HT7, also D2 and A2A adenosine Rs

Taufik H et al. 2010; Matsumoto et al. 2004; Babu et al 2008; Boyer et al. 2007; Boyer et al. 2008; Stolt et al. 2014.
PHASE Model

mitragynine congeners (MC)
1 - 10

pyran-fused MC
11 - 12

oxindole congeners (OC)
13 - 21

pyran-fused OC
22 - 25

Morphine
Opioid Receptors

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>K_i [µM]</th>
<th>Mu</th>
<th>Kappa</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mitragynine</td>
<td>0.74</td>
<td>T T</td>
<td>1.3</td>
<td>T T</td>
</tr>
<tr>
<td>2</td>
<td>Speciogynine</td>
<td>1.0</td>
<td>T T</td>
<td>3.6</td>
<td>T T</td>
</tr>
<tr>
<td>7</td>
<td>7-hydroxymitragynine</td>
<td>0.070</td>
<td>T T</td>
<td>0.32</td>
<td>0.47</td>
</tr>
<tr>
<td>11</td>
<td>Ajmalicine</td>
<td>8.96</td>
<td>+ -</td>
<td>>10</td>
<td>- -</td>
</tr>
<tr>
<td>12</td>
<td>Tetrahydroalstonine</td>
<td>>10</td>
<td>+ -</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>14</td>
<td>Corynoxine B</td>
<td>1.6</td>
<td>- +</td>
<td>>10</td>
<td>- +</td>
</tr>
<tr>
<td>16</td>
<td>Isorhynchophylline</td>
<td>0.54</td>
<td>- +</td>
<td>>10</td>
<td>- +</td>
</tr>
<tr>
<td>20</td>
<td>Corynoxine</td>
<td>>10</td>
<td>- +</td>
<td>>10</td>
<td>- -</td>
</tr>
<tr>
<td>21</td>
<td>Isocorynoxine</td>
<td>>10</td>
<td>- +</td>
<td>>10</td>
<td>- -</td>
</tr>
</tbody>
</table>
Multiple Other Receptors

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>K_i [μM]</th>
<th>Prediction (Clarity/SEA)</th>
<th>K_i</th>
<th>Prediction</th>
<th>K_i</th>
<th>Prediction</th>
<th>K_i</th>
<th>Prediction</th>
<th>K_i</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mitragynine</td>
<td>2.3</td>
<td>++</td>
<td>4.9</td>
<td>++</td>
<td>3.5</td>
<td>- +</td>
<td>5.8</td>
<td>--</td>
<td>7.3</td>
<td>+ -</td>
</tr>
<tr>
<td>2</td>
<td>Speciogynine</td>
<td>0.36</td>
<td>++</td>
<td>2.6</td>
<td>++</td>
<td>0.68</td>
<td>- +</td>
<td>0.54</td>
<td>--</td>
<td>2.9</td>
<td>+ -</td>
</tr>
<tr>
<td>7</td>
<td>7-Hydroxy mitragynine</td>
<td>>10</td>
<td>+ -</td>
<td>>10</td>
<td>+ -</td>
<td>>10</td>
<td>+ -</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>Ajmalicine</td>
<td>0.045</td>
<td>TT</td>
<td>0.043</td>
<td>TT</td>
<td>0.065</td>
<td>- T</td>
<td>0.42</td>
<td>+ -</td>
<td>>10</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>Tetrahydroalstonine</td>
<td>0.018</td>
<td>TT</td>
<td>0.040</td>
<td>TT</td>
<td>0.053</td>
<td>- T</td>
<td>0.38</td>
<td>+ -</td>
<td>2.6</td>
<td>--</td>
</tr>
<tr>
<td>14</td>
<td>Corynoxine B</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>Isorhynchophylline</td>
<td>4.8</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
</tr>
<tr>
<td>20</td>
<td>Corynosome</td>
<td>>10</td>
<td>--</td>
<td>8.4</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
</tr>
<tr>
<td>21</td>
<td>Isocorynosome</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
<td>>10</td>
<td>--</td>
</tr>
</tbody>
</table>
Atypical Opioid Properties

• Similarities to opioids:
 ▪ Binding to opioid Rs initiates G-protein-coupled receptor (GPCR) signaling.

• Differences from opioids:
 ▪ GPCR activation does not initiate the β-arrestin pathway
 – “biased agonism”

Additional Atypical Opioid Properties

• In mediating opioid-like analgesic effects, MG also blocks pain signaling through other mechanisms as well.
 ▪ Activates α-2 adrenergic postsynaptic Rs present in modulatory “descending” pain pathways.
 ▪ Impairs neuronal pain transmission by blocking Ca\(^{2+}\) channels.
 ▪ Anti-inflammatory effects, secondary to the inhibition of COX-2 and prostaglandin E\(_2\) mRNA expression.

Matsumoto K. et al, 1996; Matsumoto et al., 2005; Shaik MW et al., 2009; Utlar Z. et al., 2011
ADVERSE EFFECTS
Animal Studies

- Chronic alkaloid ingestion associated with addictive behavior (enhanced punishment tolerance; reward-seeking behavior) and cognitive impairment. ¹
 - 7OHMG >> MG

- Ascending doses of kratom alkaloids result in an increase in: ²
 - Blood pressure
 - Liver function tests
 - Creatinine

- Drug : drug interactions. ³
 - MG inhibits: - CYP 2C9, 2D6, 3A4
 - Glucuronidation (UDP-glucuronosyltransferases)

1. Ilmee MU et al, 2015; Hemby SE et al, 2019; Ismail NIW et al, 2017
 Hasan Z et al, 2019; Sabetghadam A et al, 2013;
2. Smith LC et al, 2019
Human Case Reports

- With chronic (> 1 year) use:
 - Weight loss; Insomnia; Constipation; Skin hyperpigmentation; Extreme fatigue

<table>
<thead>
<tr>
<th>Organ system</th>
<th>Presentation signs and conditions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic</td>
<td>Acute liver failure, hepatitis, transaminitis, intrahepatic cholestasis, hepatomegaly</td>
<td>[23, 108–116, 131]</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Hypothyroidism, hypogonadism</td>
<td>[26, 100]</td>
</tr>
<tr>
<td>Renal</td>
<td>Acute kidney injury</td>
<td>[67]</td>
</tr>
<tr>
<td>Cardiac</td>
<td>Cardiotoxicity, arrhythmia</td>
<td>[98, 99]</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>Acute lung injury, ARDS</td>
<td>[101, 102]</td>
</tr>
<tr>
<td>Obstetric</td>
<td>Neonatal abstinence syndrome</td>
<td>[103–107]</td>
</tr>
<tr>
<td>Neurological</td>
<td>Acute brain injury, seizure, coma, cognitive impairment</td>
<td>[21, 81, 117, 118]</td>
</tr>
</tbody>
</table>
Poison Data Bank / Medical Reports

- 2019 retrospective review of cases reported to the National Poison Data System and New York City Office of the Chief Medical Examiner:
 - Agitation (18.6%), tachycardia (16.9%), drowsiness (13.6%), confusion.
 - Serious neurological sequelae: seizures (6.1%), hallucinations (4.8%), coma (2.3%).
 - Toxicity occurred in a dose-dependent manner.
Kratom-related Deaths

- Swiss Webster mice: LD50 identical between IV administered 7OHMG, MG, heroin.

- Co-ingestions and other active use disorders predispose patients to death
 - 87% of samples submitted to forensic laboratory also contain opioids.

- Knowledge of deaths attributed to Kratom alone is difficult to accurately quantify.

MANAGEMENT AND CLINICAL CASES
Toxicity and Overdose

• Toxicity
 ▪ Supportive management in most.
 ▪ Acute hepatitis -- N-acetylcysteine (as in any other drug-induced hepatitis).
 ▪ Seizures or neurological symptoms -- anti-epileptics.
 ▪ Kidney injury, cardiovascular events, or other emergency presentations addressed with appropriate measures.

• Overdose -- some reports of mixed results with reversal agents (naloxone) and such have not been evaluated in clinical trials.
 ▪ Co-ingestions are common.

Overbeek DL et al 2018; Mousa MS et al, 2018
Withdrawal

• Mimics opioid withdrawal:
 ▪ Starts ~12-24 hours from last use, can last up to 4 days.
 - Symptomatic management of a hyperadrenergic state and/or use of opioid receptor agonists (Methadone) or partial agonists (Buprenorphine).
 ▪ Cravings.
 ▪ High risk of relapse to use on cessation (~78-89% at 3 months).

• Withdrawal intensity positivity correlated to:
 ▪ Daily amount consumed
 ▪ Duration and frequency of use

Treatment Guidelines

• To date, no guidelines exist to guide long-term management of kratom addiction.

• Efforts to establish a “standard of care”.

“KUD”
Literature Review

Records identified through database searching:
- PubMed: 463
- Embase: 752
- Web of Science: 677
- CINHAL: 182
- PsychINFO: 82
 (n = 2157)

Duplicates removed by endnote
 (n = 1485)

Articles Included for Title/Abstract Screen
 (n = 672)

Records excluded
 (n = 637)

Full-text articles assessed for eligibility
 (n = 35)

No satisfying criteria: 15
 Abstract only with limited data to retrieve: 3
 Language no English: 3

Studies included in Review
 (n = 14)
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Extent of use</th>
<th>Reason for use</th>
<th>Intervention</th>
<th>Maintenance regimen</th>
<th>Reported outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khazareli, 2018</td>
<td>Nine months, one tablespoon of powder dry plant six times daily</td>
<td>Pain</td>
<td>Inpatient Bup-mediated withdrawal, however taper was difficult and maintenance was required.</td>
<td>Bup-nx 8-2mg twice daily</td>
<td>Sober at 18 months</td>
</tr>
<tr>
<td>Cheng, 2019</td>
<td>Eight months, one capsule of kratom product five to ten times daily</td>
<td>Energy</td>
<td>Outpatient induction</td>
<td>Bup-nx 16-4mg once daily</td>
<td>Sober, no cravings at subsequent follow up visits</td>
</tr>
<tr>
<td>Smid 2018</td>
<td>Four months of smoked dry kratom, unknown amount and frequency</td>
<td>Opioid substitution</td>
<td>Inpatient induction in pregnancy, increased at 36 weeks</td>
<td>Bup-nx 16-4mg once daily (20-5mg at 36 weeks)</td>
<td>Sober at subsequent follow up visits</td>
</tr>
<tr>
<td>Buresh, 2018</td>
<td>One year use of kratom product, unknown details</td>
<td>Pain</td>
<td>Outpatient induction</td>
<td>Bup-nx 24-6mg once daily</td>
<td>Sober at 7 months</td>
</tr>
<tr>
<td>Boyer, 2008</td>
<td>Several years, episodic use during opioid withdrawal as tea.</td>
<td>Opioid substitution</td>
<td>Outpatient induction</td>
<td>Bup-nx 16-4mg once daily</td>
<td>Sober at subsequent follow up visits</td>
</tr>
<tr>
<td>Mandeep, 2019</td>
<td>Unknown details.</td>
<td>Opioid substitution</td>
<td>Outpatient induction</td>
<td>Bup-nx 8-2mg twice daily</td>
<td>Sober at 2 months</td>
</tr>
<tr>
<td>Hartwell, 2018</td>
<td>Various, this is a report of 9 veterans.</td>
<td>Pain and opioid substitution</td>
<td>Various</td>
<td>Bup-nx, naltrexone, methadone</td>
<td>Unknown</td>
</tr>
<tr>
<td>Author, year</td>
<td>Extent of use</td>
<td>Reason for use</td>
<td>Intervention</td>
<td>Maintenance regimen</td>
<td>Reported outcome</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Galbis-Reig, 2016</td>
<td>Two year history of using kratom extract</td>
<td>Pain</td>
<td>Inpatient supportive (clonidine mediated) detox after several outpatient attempts</td>
<td>Naltrexone PO 50mg daily</td>
<td>Unknown</td>
</tr>
<tr>
<td>Smuhl, 2019</td>
<td>Two year use of 30 grams daily of kratom crushed leaf, every 2 hours mixed with water</td>
<td>Anxiety, insomnia</td>
<td>Outpatient induction</td>
<td>Bup-nx 4-1mg once daily</td>
<td>Attempted taper at 3 months and relapsed to use, sobriety maintained upon restarting</td>
</tr>
<tr>
<td>Smid, 2018</td>
<td>Seven months, unknown details</td>
<td>Pain, anxiety</td>
<td>Outpatient initiation following kratom cessation due to cravings</td>
<td>Bup 2mg daily</td>
<td>Sober at subsequent follow up visits</td>
</tr>
<tr>
<td>Buresh, 2018</td>
<td>Unknown duration, 0.25 ounces every 4 hours</td>
<td>Pain</td>
<td>Outpatient induction</td>
<td>Bup-nx 4-1mg four times daily</td>
<td>Sober at 9 months</td>
</tr>
<tr>
<td>Agapoff, 2019</td>
<td>Three years use of 30g daily of kratom crushed leaf as smoothie</td>
<td>Focus, concentration</td>
<td>Outpatient induction</td>
<td>Bup-nx 8-2mg once daily</td>
<td>Sober at 16 months, tapered to 6-1.5mg</td>
</tr>
<tr>
<td>Diep, 2018</td>
<td>Unknown duration, overdosed on 600mg of kratom product</td>
<td>Unknown</td>
<td>Inpatient initiation while in rehabilitation due to cravings</td>
<td>Bup-nx 2-0.5mg three times daily</td>
<td>Able to taper after 45 days, unknown follow-up outcome</td>
</tr>
<tr>
<td>Sheleg, 2011</td>
<td>One year use, tincture every 4 hours, unknown details</td>
<td>Pain</td>
<td>Inpatient induction on Bup due to withdrawal</td>
<td>Methadone</td>
<td>Outpatient transition to Methadone</td>
</tr>
</tbody>
</table>
Survey of Addiction Experts

Are you a physician (MD / DO) or resident/fellow in training?
 If NO – survey ends
 If YES -- Have you encountered patients with an addiction to Kratom
 If NO – survey ends
 If YES – Did all of these patients have a concurrent (or past) history of opioid use disorder?
 If YES – survey ends
 If NO -- How have you managed their abstinence from kratom?
 - Nonpharmacologically (ie. talk therapies)
 - Buprenorphine
 - Methadone
 - Naltrexone
 - Other (please type in)
Survey of Addiction Experts

- To manage abstinence:

 Survey
 - Kratom Addiction = 57
 - In Isolation of Opioid Use Disorder = 19

 Maintenance Modalities
 - Buprenorphine = 17
 - Naltrexone = 3
 - Methadone = 1
 - Talk Therapies = 8
 - Supportive Medications = 1
 - Buspar = 1

 Literature
 - Kratom Addiction = 14
 - In Isolation of Opioid Use Disorder = 7

 Maintenance Modalities
 - Buprenorphine = 6
 - Naltrexone = 1
More evidence for MOUD

Analysis of 8 cases correlating dose of Kratom used to the required Bup dose for induction and maintenance.

- <20g daily – Bup 4 – 8mg
- >40g daily – Bup 12 – 16

Dots represent each individual patient. The solid line shows the correlation (r = 0.84) between kratom dose used at presentation and dose of buprenorphine at OAT induction.

Weiss, ST et al, 2020
Conclusion

• In light of the detrimental risks associated with growing reports of KUD and lack of any randomized controlled trials to explore treatment as well as guidelines, there is evidence that the indication of MOUD should be extended to KUD as well.
 ▪ This is especially true if one’s use of Kratom is considered high risk, involves high doses, and meets DSM-5 diagnostic criteria for a moderate or severe use disorder.
 ▪ Consideration should also be given to referral of patients for counseling or enrollment in 12-step addiction treatment programs.
Q & A
References

References

• Weiss, Stephanie T. MD, PhD; Douglas, Heather E. MD Treatment of Kratom Withdrawal and Dependence With Buprenorphine/Naloxone, Journal of Addiction Medicine: August 26, 2020 - Volume Publish Ahead of Print - Issue

References

PCSS Mentoring Program

- PCSS Mentor Program is designed to offer general information to clinicians about evidence-based clinical practices in prescribing medications for opioid use disorder.

- PCSS Mentors are a national network of providers with expertise in addictions, pain, evidence-based treatment including medications for addiction treatment.

 - 3-tiered approach allows every mentor/mentee relationship to be unique and catered to the specific needs of the mentee.

 - No cost.

For more information visit:

https://pcssNOW.org/mentoring/
PCSS Discussion Forum

Have a clinical question?

Ask a Colleague
A simple and direct way to receive an answer related to medication-assisted treatment. Designed to provide a prompt response to simple practice-related questions.

Ask Now

http://pcss.invisionzone.com/register
PCSS is a collaborative effort led by the American Academy of Addiction Psychiatry (AAAP) in partnership with:

<table>
<thead>
<tr>
<th>Addiction Technology Transfer Center</th>
<th>American Society of Addiction Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Academy of Family Physicians</td>
<td>American Society for Pain Management Nursing</td>
</tr>
<tr>
<td>American Academy of Pain Medicine</td>
<td>Association for Multidisciplinary Education and Research in Substance use and Addiction</td>
</tr>
<tr>
<td>American Academy of Pediatrics</td>
<td>Council on Social Work Education</td>
</tr>
<tr>
<td>American Pharmacists Association</td>
<td>International Nurses Society on Addictions</td>
</tr>
<tr>
<td>American College of Emergency Physicians</td>
<td>National Association for Community Health Centers</td>
</tr>
<tr>
<td>American Dental Association</td>
<td>National Association of Social Workers</td>
</tr>
<tr>
<td>American Medical Association</td>
<td>National Council for Behavioral Health</td>
</tr>
<tr>
<td>American Osteopathic Academy of Addiction Medicine</td>
<td>The National Judicial College</td>
</tr>
<tr>
<td>American Psychiatric Association</td>
<td>Physician Assistant Education Association</td>
</tr>
<tr>
<td>American Psychiatric Nurses Association</td>
<td>Society for Academic Emergency Medicine</td>
</tr>
</tbody>
</table>
Funding for this initiative was made possible (in part) by grant no. 1H79TI081968 from SAMHSA. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.